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Compositional language use shows in creatively associating hitherto unencountered meanings
and forms in systematic ways. I submit that compositionality, as a key feature of human lan-
guage, is no reason not to see a continuum between human speech and animal communication.
Basic forms of compositional creativity presuppose surprisingly little cognitive sophistication.
If changes in agents’ behavioral dispositions are susceptible to similarities between different
meanings and, independently, to similarities between different forms, creative compositionality
can emerge in a signaling game model with reinforcement learning.

1. Introduction

A decisive step in the evolution of language was the transition from a holophras-
tic term language to a compositional language (Jackendoff, 1999). A holophras-
tic language consists of simple expressions that are individually meaningful, but
are not combined in meaningful ways. In contrast, a compositional language
has structured linguistic expressions which are built up from simpler individually
meaningful parts. The meaning of a complex expression is related in a system-
atic way to the meaning of the parts that it comprises. Human language can be
used holophrastically, but is compositional. Evidence for holophrastic commu-
nication in animals is known for long (c.f. Seyfarth, Cheney, & Marler, 1980).
Animals also combine signals into sequences with novel meanings (c.f. Arnold
& Zuberbühler, 2006; Ouattara, Lemasson, & Zuberbühler, 2009). Language-
trained primates even creatively produce short sequences of meaningful elements
to express new meanings (c.f. Marks Greenfield & Savage-Rumbaugh, 1990).

A compositional language has many advantages over a non-compositional
one: it can convey more with less means, is therefore less susceptible to noise,
can be learned from fewer examples, and much else. But in order to understand
how the transition from a holophrastic to a compositional language might have
been possible, it is unsatisfactory to simply point to a potential evolutionary ad-
vantage of compositionality once it is there (contra Nowak & Krakauer, 1999).



The relevant question is rather by what mechanism early forms of compositional-
ity could have arisen in the context of a holophrastic system.

Many learning mechanisms are capable of linking a structured meaning space
with a structured space of potential expressions, and so provide potential answers
to the how?-question we are after (Batali, 1998; Kirby, 2002). It is good to know
that it is possible for rather sophisticated agents to learn, and even generate, a
compositional language. But once we know it, the key question becomes what the
minimal cognitive abilities are that could lead to the transition in question.

Skyrms (2010) addresses this question in a game theoretic setting and sug-
gests to see the beginning of compositional language in a model first introduced
by Barrett (2007). The following paragraphs will introduce this model, together
with the relevant background on signaling games. I proceed to argue that the
Barrett-Skyrms model misses a key feature of compositionality, namely that it is
a flexible and potentially creative ability to associate novel expressions with novel
meanings. But rudimentary forms of creative compositionality do not presuppose
much sophistication. Agents who perceive similarities between world states and
(unrelated) similarities between signals can evolve a disposition to creatively ex-
ploit existing associations between states and signals. This can be demonstrated
by a simple signaling game model using Roth-Erev reinforcement learning with
two defensible amendments: (i) a spill-over mechanism that distributes accumu-
lated rewards also to non-actualized contingencies proportional to how similar
they are to the successful actual contingency (c.f. O’Connor, 2013), and (ii) a
small amount of lateral inhibition (c.f. Steels, 1995).

Signaling Games. Signaling games were invented by Lewis (1969). In the sim-
plest case, an unbiased random process selects one out of two possible world
states. The sender knows the selected state, but the receiver does not. The sender
sends one out of two signals. The receiver perceives the signal and chooses one
out of two acts. If the chosen act matches the world state, the game is a success for
both players, otherwise a failure. If the sender uses one signal consistently in the
first state, and another in the other, and if the receiver chooses the appropriate act
after each signal, sender and receiver will always play successfully. Such behavior
of sender and receiver, as it were, bestows a meaning on the signals: each signal
comes to be associated with a unique world state and its corresponding action.

Reinforcement Learning. Players could arrive at meaningful signal use in man-
ifold ways. Much depends on their cognitive abilities. From an evolutionary
perspective, and in line with the kind of methodological minimalism advocated
above, it is interesting to assume that players are rather unsophisticated, incapable
of rational decision making and possibly even unaware that they are playing a
game. Basic forms of reinforcement learning (RL) are relevant for this purpose and
have been studied well in this context. Basic RL assumes that each player keeps



an implicit record of the past successes associated with each action choice, the
so-called accumulated rewards. The sender keeps a record for each state-signal
pair, the receiver one for each signal-act pair. Whenever a play was successful,
agents add a reward to the pair that was actually used. Initially, all accumulated
rewards are 1. Accumulated rewards inform the agents’ dispositions to act. In the
simplest case, the probability that the sender selects signal m in state t is given
by the relative accumulated rewards for that pair, i.e., the accumulated rewards
for t and m divided by the sum of all accumulated rewards for t and all possible
signals: p(m | t) = ar(t,m)/

∑
m′ ar(t,m

′). Similarly for the receiver.
Argiento et al. (2009) proved that this form of RL will eventually settle into

a communicative constellation for the basic signaling game sketched above. If
there are more states or signals, or if states are not equiprobable, things change.
E.g., with three equiprobable states and three signals basic RL leads to a fully
communicative state in ca. 95% of simulation runs (Barrett, 2007).

The Barrett-Skyrms Model. The meaningfulness that arises in Lewis-style sig-
naling models is holophrastic. But a slight extension of the model raises hopes that
very rudimentary forms of compositional meaning can also be traced in this way.
Barrett (2007, 2009) studied signaling games with two signals, four states and cor-
responding actions. Instead of one sender, there are two. If each sender can send
one out of two signals, it is possible to communicate exactly which world state
obtains. Simulations of RL show that this situation almost always ensues. In the
fully communicative situation, each sender’s signal conveys one bit of informa-
tion about which of the four world states is actual. The receiver puts the necessary
information together and “infers” what the right choice of action is; or at least this
is how it looks from the outside.

Skyrms (2010) suggests a variant of the multiple-sender model as a step to-
wards understanding the origins of compositionality. The crucial observation is
that the two-sender case is formally equivalent to a set-up with one sender who
may send one out of two signals twice in sequence. Nothing else changes. RL still
frequently leads to fully communicative signal use. But we have complex signals
now, made up of two parts. Each part communicates one bit of information about
the state. Skyrms therefore suggests to see here “a simple kind of compositional-
ity” because “[t]he information in a complex signal is a function [my emphasis]
of the information in its parts” (Skyrms, 2010).

I partly agree, partly disagree. Although we can describe the situation as one
where the meaning of a complex signal is a function of its parts, there is no justi-
fication for doing so. A simpler description is that the receiver has simply learned
to respond to four signals in the right way. Nothing hinges on the fact that these
four signals are composed of two individual signals to us. The dispositions of the
receiver to react to complex signals do not depend on their composition. Similarly,
the sender has simply learned to emit one out of four signals that are implemented



as a bit-string of length two. There is no indication in the model that the agents
have learned to apply a function of the meaning of the basic signals of which the
complex signal is composed. They never actually use the simple signals. If they
would, they might use them in ways unrelated to their “meaning contribution” to
the complex signals. An explanation of basic forms of compositionality (or basic
conjunctive inferences for that matter), requires an explanation of how agents ac-
quire a rule-like disposition that shows when applied to novel stimuli. Only then
is there a justification within the model to assume that they use the meaning of
basic signals to arrive at the meaning of a complex signal.

Creativity and Spill-Over RL. Compositional signal use should show in creativ-
ity in the application of behaviorally acquired meaningfulness. Only then are we
justified in describing behavior as following a functional combination of meaning.
But creativity in this sense is at odds with basic RL. We would like to see whether
RL-learners can be creative when confronted with a novel stimulus. But basic RL
does not influence choice dispositions in non-actualized contingencies. So basic
RL-learners will make uniform random choices in novel situations.

Variants of RL in which rewards are accumulated also for non-actualized con-
tingencies exist (c.f. O’Connor, 2013). I submit that creative use of acquired
meaningfulness is possible if rewards spill-over to non-actualized contingencies
proportional to their similarity with the actualized one. Suppose that in state t
signal m has led to payoff x ≥ 0. (I focus on the sender from here on; the receiver
part is analogous.) Basic RL adds x to the accumulated rewards ar(t,m) only. In
contrast, spill-over RL adds x to all ar(t′,m′) in proportion to how similar the pair
〈t′,m′〉 is to 〈t,m〉. Concretely, if similarity between pairs is a number between
0 and 1, then we add x times the similarity of 〈t,m〉 and 〈t′,m′〉 to ar(t′,m′).

Basic and spill-over RL differ in their assumptions about the learner’s
secondary-dispositions. Secondary dispositions are a learner’s dispositions to
change his (primary) dispositions to act given feedback about success or failure.
Spill-over RL presupposes that agents’ secondary dispositions are sensitive to sim-
ilarity of choice-point/action pairs. Basic RL does so, too, but also assumes that all
pairs are maximally distinct. Depending on what kind of stimuli and similarities
are at stake, spill-over RL presupposes less cognitive sophistication. The spill-over
may be due to an inability to distinguish sharply.

Model. The simplest non-trivial case where spill-over RL might lead to compo-
sitional creativity is a signaling game with six states and six signals. Three states
and three signals are simple, three of each complex. If A and B are simple states
(signals), then AB is a complex state (signal) built from A and B. Obvious ways
of thinking about complex states and signals are meaning conjunction and sig-
nal sequencing, but other ways of combination are conceivable. We can remain
entirely abstract here. Each state/signal has similarity 1 to itself. Similarity is a



symmetric notion, and complex state/signal AB bears a similarity 0 ≤ s ≤ 1 to
both A and B, and 0 to all others. The similarity of pair 〈t,m〉 and 〈t′,m′〉 is
the similarity of t and t′ times the similarity of m and m′. If s = 0, we obtain
basic RL. Notice that agents’ secondary dispositions are sensitive to the similarity
among states, and the similarity among signals, but not to similarities between a
state and a signal, or even similarities between associating this signal with this
state and that signal with that state. So, our assumptions about similarities do not
smuggle in a particular cognitive ability at all; on the contrary.

This set-up promises to help explain spontaneous and creative compositional
signal use. Suppose the sender has signals for states tA and tB, namely mA and
mB. Suppose the sender is in state tAB for the first time. tAB bears marks of both
tA and tB but is identical to neither. Perhaps, so the intuition goes, accumulated
rewards of using mA and mB successfully in the past in states tA and tB have
spilled over sufficiently to build a strong association between the hitherto unseen
state tAB and the hitherto unused signal mAB. Maybe this association is strong
enough for mAB to be the most likely action choice in tAB. This would then truly
be a creative compositional use of a complex signal based on what its parts mean.

Lateral Inhibition. Unfortunately, not all values of s achieve this. The pair
〈tAB,mA〉 is at least as similar to 〈tA,mA〉 as 〈tAB,mAB〉 is. If 0 < s < 1/2, the
accumulated rewards of 〈tAB,mAB〉will be strictly lower than those of 〈tAB,mA〉
(see below). Spill-over RL alone is not enough to evolve strong dispositions for
creative compositionality for small s.

Things change if we add the possibility of lateral inhibition, which is another
standard variation on classical RL models (Steels, 1995). If 0 ≥ i ≥ 1 is a param-
eter for lateral inhibition, then, if 〈t,m〉 is part of a successful play, we subtract
i from the sender’s accumulated rewards for all 〈t,m′〉 and 〈t′,m〉 (where t 6= t′

and m 6= m′), if the result is non-negative, and otherwise set the accumulated
rewards to 0. (Likewise, for the receiver.) Positive i helps acquire a compositional
language, although it is not strictly necessary either. It helps because, intuitively
speaking, lateral inhibition does not affect the association of 〈tAB,mAB〉, but di-
minishes the association of 〈tAB,mA〉 and 〈tAB,mB〉.

Lateral inhibition is not an innocuous assumption. A positive i suggests that
the agents tend towards one-to-one associations between choice points and ac-
tions. Some psychologists see evidence for a related tendency in language acqui-
sition, the so-called mutual exclusivity bias: when learning new words children
seem to assume that different objects must have different names and different
names must refer to different objects (Clark, 2009).
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Figure 1. Comparison of accumulated rewards in the mean field limit when agents use a fully com-
municative language for simple states and signals. The plot shows the regions of the parameter space
i, s ∈ [0; 1] where the complex signal mAB is the most likely choice in unfamiliar state tAB.

Analysis. Suppose the sender uses mA exclusively in state tA, mB in tB and mC

in tC. The mean field change in accumulated rewards is easy to calculate:

ȧr(tAB,mA) = ȧr(tAB,mB) = 1/3max(s− i, 0) ȧr(tAB,mC) = 0

ȧr(tAB,mAC) = ȧr(tAB,mBC) = s2/3 ȧr(tAB,mAB) = 2s2/3

In the mean field limit, the probability of the sender to choose the “compositional”
message spontaneously converges to p(mAB | tAB) = s2/2s2+max(s−i,0). If i ≥ s,
then this probability peaks at 1/2. If i > s − 2s2, the accumulated rewards of
the creative compositional pairing 〈tAB,mAB〉 will be the highest for that choice
point. The region of the parameter space where this holds is shown in Figure 1.

Simulations. Limit results are important, but do not inform us about short-term
dynamics. Numerical simulations do. Figure 2 shows results from spill-over RL
for different parameter values. Initially, accumulated rewards were 1. Agents first
played with only simple states and signals for 104 rounds. In ca. 99% of trials a
communicative code evolved. 100 of these were recorded for each parameter pair.
Agents then continued to play with the full state and signal set. The plots show
the average relative accumulated reward at choice point tXY for options mXY and
mX. With X,Y ∈ {A,B,C} each plotted point is an average of 3 times 100
data points. We see that under favorable parameter values a dominant disposition
for creative compositionality co-evolves quickly, together with the basic meaning
association of simple states and simple signals.

Discussion. Even unsophisticated agents can acquire a disposition to creatively
use signals in a new environment in a basic compositional way. The main ability
needed for that is to have secondary dispositions that are suitably sensitive to any
perceived similarity between states and any perceived similarity between signals.
For rudimentary forms of compositionality, it is not necessary that agents, as it
were, look for structural similarity between states and signals. If agents could
track more information about similarities, they would presumably evolve more



0

0.5

1

0

0.5

1

103 104 105 106
0

0.5

1

103 104 105 106103 104 105 106

i = 0 i = 0.1 i = 0.2

s
=

0
.0
5

s
=

0
.1
5

s
=

0
.2
5

av
er

ag
e

re
la

tiv
e

ac
cu

m
ul

at
ed

re
w

ar
d

rounds

Figure 2. Results of numerical simulations of spill-over RL when there is no initial simple language
in place. For different values of parameters the plots show average relative accumulated rewards in
state tXY for using mXY (black) and mX (gray).

elaborate compositional systems. It is tempting to speculate that a further step
towards a human-like compositional language would involve recognizing simi-
larities in the dynamically shifting patterns in the way a set of signals is used.
But this is beyond the scope of this contribution, and irrelevant for a demonstra-
tion that basic forms of compositionality can arise already if agents merely track
similarities among states and, independently, similarities among signals.

Evolving creative compositional dispositions is not a practical certainty. Only
some parameter constellations readily allow for it. Low values for i and s seem
most reasonable for unsophisticated agents. But it is then that creative composi-
tionality is unlikely to evolve. This may explain why we have seen only little direct
evidence of it in animal communication systems so far. Still, the model presented
here makes clear that a continuous transition from holophrastic to compositional
coding is possible.

It might be objected that spontaneous compositional language use, albeit it
possibly the most likely choice, is never certain, i.e., p(mAB | tAB) is at most 1/2. I
believe that this is a good prediction that again excludes the presumably erroneous
prediction that creative compositionality should be much more wide-spread in the
animal kingdom than current evidence suggests. In sum, I propose that the model
demonstrates that a path from holistic language to creative compositionality exists
also for non-sophisticated RL-learners, but that the likelihood of finding this path
is naturally upper-bounded.
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